EXERCISE 1

 Write a Matlab function [v_k, µ_k]=power(A,maxit,tol) that implements the power method to approximate the dominant eigenvalue µ_k of the matrix A and related eigenvector v_k. Use a random vector as initial guess and test it on the matrix

A = Q*diag(1:10)*inv(Q), with Q = orth(randn(10,10))

Note that the spectrum of A is $\{1, ..., 10\}$. Modify the function to be able to plot the relative error $|\lambda_1 - \mu_k| / |\lambda_1|$ and also $(|\lambda_2/\lambda_1|)^k$, k = 1, 2..., and comment.

- Same as above, but test on the nonsymmetric matrix obtained using Q = randn(10,10). Compare the results with the previous case.
- Write the function inverse_power that implements the inverse power method (use "backslash" to solve the linear system), and test it on the matrix of the previous point to approximate $\lambda_9 = 2$ using the shift $\mu = 1.55, 1.65, 1.75, 1.85, 1.95$. Plot the error $|\lambda_9 \mu_k|$ vs k for the different shift μ . Optional exercise: plot the number of iterations required to converge vs. the value $|\lambda_9 \mu| / |\lambda_{10} \mu|$ and comment.